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A number of QRS Morphology BAnalysis and Clust-
ering algorithms were quantitatively evaluated
through the use of an annotated ECG database. Al-
gorithm parameters of data representation, beat
similarity measurement, and normalization proced-
ure were addressed. With the establishment of a
systematic algorithm comparison system, algorithms
were rank-ordered in terms of clustering
performance. The rankings indicated the marked
superiority of certain normalization procedures.
Performance contributions of other algorithm
parameters were less dramatic.

Introduction

QRS Morphology Analysis and Clustering (QRSMAC)
is a critical process in automated cardiac arrhyth-
mia detectors. It separates QRS waveforms into
classes based on their degree of morphologic simi-
larity. Many different approaches to the OQRSMAC
task have been described in the literature over the
past two decades. They have traditionally been di-
vided into the two broad classes of template match-
ing [1-6] and feature extraction/clustering [7-14].
"Template matching" has usually referred to systems
in which QRS data is represented by time-serial
samples. QRS similarity comparisons are performed
by means of either a cross oorrelation [2,4] or
"area differences" omputation. In "feature ex-
traction" systems, the QRS data is represented by a
set of either heuristic descriptors such as QRS am—
plitude, area, offset, width, etc., or formal
features such as coefficients of orthonormal vector
sets. The features are considered to represent each
QRS as a point in N-dimensional space, where N is
the number of features measured. Similarity between
beats 1s then related to the distance separating
points in N-space.

In the past, it has been very difficult to as-
sess the relative merits of the many different
QRSMAC algorithms which have been proposed. The
lack of a generally acceptable annotated database
has made it impossible to compare evaluations done
by different groups. Additionally, there has been
no generally accepted experimental methodology by
which to make such comparisons. The present study
made use of the MIT/BIH annotated ECG database[15]
to systematically ocompare a number of different
QRSMAC strategies. The problem, we soon discovered,
was much more complex than we had initially ima-
gined, even when restricted primarily to real-time
algorithms.
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Figure 1 diagrams a generalized QRSMAC system.
The metric element determines the morphologic simi-
larity between incoming QRS complexes and previous-
ly established CRS clusters. Its function is regu-
lated by the cluster control element, which also
controls the assignment of incoming QRS complexes
to existing or new clusters based upon morphologic
similarity.
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Figure 1: The Generalized QRSMAC Process
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Metric Element

The heart of the QRSMAC lies in the metric ele-
ment. This is a step for which many implementation
possibilities exist. The major data processing
steps within the metric element are shown in figure
2. In the "data representation" step, individual
QRS's are represented as a series of numbers which
are stored in the elements of a "data vector". Typ-
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icelly, elements will contain either QRS time sam-
ple values or else measured QRS features. Time sam-
ple vectors may contain zll samples of a QRS or @
specifically chosen subset of QRS data. Feature
vectors may contain many types of either heuristic
or formal features. Note that a feature vector may
contain only a chosen few of the total possible
features in a set.

Once the data vectors are defined, beat similar-
ity is measured (see fig 3). This may involve cal-
culating the correlation ooefficient between two
data vectors (the N-dimensionzl cosine between the
vectors) . Alternatively, data vectors may be oon-
sidered to point to locations in N-space. Beat
similarity may then be expressed as either the
"straight line" (L2) or "city block" (L1) distances
between N-space locations.

"City block"
0= a+b =¥ |-

Y
!
b
==

X

Y . .
j 4 Straight line
/ L D =c = Vo p?
[ V Z[xe"‘.i

Cross -correlation coefficients

D~COS O¢

Figure 3: Similarity Measures

Some form of normalization must be applied to
the similarity measurements in order to make them
more universal, and independent of scaling factors.
A wide variety of normalization technigues are pos-
sible. "Magnitude" normalizations divide similarity
measures by the magnitudes of the vector elements
of one or both beats. "Variance" normalizations ex-
press similarity measures in terms of standard de-
viations of the vector element values.

The normalized similarity measures are used to
assign each beat to a morphologic cluster (see fig
4). The candidate beat is assigned to the nearest
cluster unless the corresponding similarity measure
is greater than a preset threshold. In that case a
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new cluster is formed. The threshold setting will
therefore determine the number of clusters formed
by a particular algorithm.

The number of possible QRSMAC algorithms is
enormous. Any data representation method can be
combined with any similarity measure normalized by
any one of many schemes. The traditional separation
of OQREMAC algorithms into either feature
extraction/clustering or template matching ap-
proaches is clearly an oversimplification.
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Figure 4: Cluster Assignments

Methods

Algorithms

Of the hundreds of possible QRSMAC algorithms,
32 were chosen to be implemented and compared. Each
algorithm combined a specific data representation,
measurement strategy, and normalization procedure.
The completed algorithms were selected to simulate
many of the procedures commonly used in arrhythmia
analysis systems today. Several algorithms were
also _synt}‘l!esized to allow for the evaluation of
certain major algorithm variations, such as compar-
ing an Ll to an L2 similarity measure, or compar ing
time samples to heuristic features. The 32 algo-

iigiims nstructed are indicated in the following
able.



Table 1: QRSMAC Algorithms
Heuristic features
8 single channel features
L2 similarity measure
No normalization
Variance normalization
(4.or,5.0dr,6.cr,7.car,8.cdr)
Magnitude normalization (30.s2,31.as2)
L1 similarity measure
Magnitude normalization
(9.s2,10.s1,11.r2,12.1x1)
16 feature, 8 from each of two channels
L2 similarity measure
No normalization
Variance normalization
Time samples
45 single channel samples
Ll similarity measure
Magnitude normalization
(18.s2,19.as2,20.ws2,21.was2,24.asl)
L2 similarity measure
Magnitude normalization (32.82)
Correlation similarity measure (25,26.a)
46 samples, 23 from each of two channels
L1 similarity measure
Magnitude normalization (29.s2)
12 time samples (every 5th original sample)
Ll similarity measure
Magnitude normalization
Correlation similarity measure
5 time samples (every 9th original sample)
L1 similarity measure
Magnitude normalization
Correlation similarity measure

(2,3.a)

(15)
(16.0r,17.wr)

(22.s2)
(27)

(23.82)
(28)

Minor codes
a - averaging used in cluster representation

w — wiggling used in sample extraction

2 - data from both vectors being compared used
in normalization

1 - data from only one of the vectors being
compared used in normalization

d - variances modified by discriminant analysis
derived results

o - overall type variances

¢ - averaged within-cluster type variances

r - ratio type calculations

s - sum type calculations

The table describes the algorithms organized by
data representation, similarity measure, and nor-
malization. Numbers in parentheses display algo-
rithm identifying numbers and also (following the
decimal points) additional codes describing minor
algorithm variations. A few algorithms were left
out of the table for simplicity.

Algorithm variations were generally constrained
to the metric stage. The principal variations sub-
stituted QRS time samples for heuristic features in
data representation, used either L1, L2, or corre-
lation calculations in similarity measurement, and
used either variance or magnitude type normaliza-
tions (when normalizations were being applied).
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The 8 heuristic features consisted of [16]

Peak to trough QRS height

Center of mass offset from the baseline

QRS width derived from height and area

ST segment slope

Normalized time interval between peaks

Signed area

Unsigned area

QRS width as determined by locating QRS

beginning and end points
QRS time samples were extracted beginning 55

msec prior to the largest QRS peak (either positive
or negative). Samples were extracted for 125 msec
following this start point using a sampling fre-
quency of 360 Hz, 11 bit resolution. In the two-
channel, time sample experiment the sampling fre-
guency was 180 Hz. When "wiggling" was used, five
data vectors were extracted for each beat, the vec-
tors differing from one another by the extraction
start locations. Variations of -2, -1, 0, +1, and
+2 sample points from the standard start point were
used to create the five vectors. Each of the five
vectors was matched to clusters during similarity
measurements, and the best was chosen.

Database

The MIT/EIH annotated ECG datsbase was used as
the ECG test source in the experiments. Thirty of
the 48 records of the database were selected for
use in the study. 18 records were rejected because
the incidence of abnormal beats was too low (< 1%).
Each record contained one-half hour of two-channel
ECG data from one patient. Annotations indicated
the physiologic (though not necessarily morpholo-
gic) identity of all database beats. All data pro-
cessed by the QRSMAC routines consisted of actual
QRS oomplexes as determined by the annotation
codes. No artifacts or otherwise false QRS's were
evaluated. Beats processed by the algorithms were
selected to be of seven types: normal, PVC, left
and right bundle branch block, ventricular escape,
aberrently conducted SVPB, and paced beats.

Per formance measurement and algorithm comparison

Algorithms were tested on each of the thirty
records of the database. BAlgorithm output consist-
ed of a set of QRS clusters, each cluster being de-
tailed as to the number of beats of each physiolo-
gic type it contained. In general, algorithm per-
formance reflected an algorithm's ability to create
clusters containing beats primarily of only one
physiologic type.

Performance measurement involved four tasks.
First, clusters were named to indicate the phy-
siologic beat type the <cluster most likely
represented (figure 5). Second, the clusters pro-
duced by each algorithm were combined to generate a
classification error matrix. The matrix indicated
for each beat type the percentage of beats that had
been assigned to all possible cluster types (figure
5). Third, from each algorithm's error matrix, sen-
sitivity and positive predictive accuracies were
determined for each of the seven possible beat
types. Fourth, the 14 error measures so derived for
each algorithm were normalized and then averaged
together to produce a single final performance in-
dicator (figure 6). Due to the normalization, the
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Figure 5: Cluster Naming and Error Classi-
fication

final performance measure is relevant only in the
confines of this study. Although it allows us to
assess the particular strengths and weaknesses of
the algorithms under investigation, it has no use
those of other investi-

in comparing results to
gators.
Beat CALCULATE SEns, PPA
CLASSIFICATION Sens., Pos. Preo. P
MaTRIX Acc. FOR EACH 4
BEAT TYPE
Bear CALCULATE NORMALIZE ALL Ens. PPA
CLASSIFICATION Sens., Pos. PRen. 5‘"5;;1'1;155 .
Mataix Ayl Acc. Fom EACH :"" 5. FReD. |
BEAT TYPE cc, ™

MEANS # o
FOR EACH BEAT
TYPE

P =) [Sensifivity, + Pos Pred Acc )
1

ofl beat types

Figure 6: Performance Measure Determination

The performance measure is a function of cluster
count (the number of clusters created by an algo-
rithm in processing the database). If an algorithm
creates a large number of clusters it has less

chance to make classification errors as when it
uses only a few clusters. Its performance will
therefore increase with cluster oount. An

algorithm's actual merit is related to its ability
to perform well while using only a minimal number
of clusters. To compare this aspect in different
algorithms, one is therefore required to compare
algorithm performance vs. cluster ocount relation-
ships (performance curves). Several algorithms were
examined owver a range of cluster ocounts to create
typical performance curves (figure 7). Algorithms
were judged superior when their curves lay rela-
tively closer to the upper left-hand corner of such
plots.

Performance curve determinations were a very
time consuming process. The determination of six
points on one curve required at least two days of
continwus computing time. Many algorithms were
therefore compared by a simplified process in which
only one point was found for an algorithm. This
point was plotted against the background of exist-
ing performance curves, and algorithms were com-
pared based on how such individual points fell in
relation to the existing curves.
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Results

The following major observations were made in

analyzing the data.
1. Performance curves for a wvariety of different
algorithms were well-behaved, monotonically in-
creasing functions of cluster ocount, which seemed
to begin to reach plateaus at cluster counts of 650
(totaled over 30 records, about 20 clusters per
record) . Therefore, it seems reasonable to use per-—
formance curves as an experimental technique by
which to ocompare algorithms —— in fact it is re-
quired.
2. The best algorithm of all those tested incor-
porated:
QRS sample data points, L1 similarity measure,
2 beat magnitude sum normalization with
averaging.
The worst performance was observed with:
Heuristic features, L2 similarity measure,
var iance ratio normalization, within-cluster
variance calculations.
The performance curves for these two algorithms are
shown as lines 19 and 6, respectively, in figure 8.
Any or all of the algorithm parameters oould have
been responsible for the performance disparity of
algorithms 6 and 19. Several possibilities are ex-
amined below.
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Figure 7: Actual Performance Curves

3. Ll similarity measures were found to perform

slightly better than or as well as L2 measures. Al-
gorithms in the pairs <30 and 9>, and <32 and 19>
are identical to one another except that 30 and 32
use an L2 approach whereas 9 and 19 use an Ll. In
figure 8, it can be observed that both algorithms
in a pair displayed similar performance to one
another. Both measures can therefore produce equal-
ly good results. L1 is, however, simpler to com-

pute.



4. Time samples were found to perform slightly
better than or as well as heuristic features. In
pairs <9 and 18> and <30 and 32>, § and 30 use
features whereas 18 and 32 use samples. A modest
performance gain when using time samples is ap-
parent. The time sample computations, however, used
45 sample points whereas feature calculations used
only B features. Time sample approaches were there-
fore much more computationally expensive and memory
intensive.

5. Only minor performance losses were observed when
using a reduced number of time samples in L1 type
similarity calculations. Algorithms 18, 22, and 23
are identical except that 45, 12, and 5 samples,
respectively, were used by the algorithms in calcu-
lations. Relatively insignificant performance
differences among the algorithms are apparent in
figure 8. Thus, the use of a large number of sample
points in calculations is unnecessary. Results 4
and 5 combined show that equal numbers of time sam—
ples and features can be expected to perform egual-
ly well at eqgual cost.

6. Correlation coefficient measures were found to
perform more poorly than Ll or L2 measures. In fig-
ure 6, pairs <18 and 25> and <19 and 26> (18 and 19
using L1, 25 and 26 using correlation) demonstrate
a marked performance reduction due to the oorrela-
tion approach.
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Figure 8: Performance Curves with Addit-
ional Experimental Results
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7. Cluster representation based on the average of
all beats coontained in a cluster, as opposed to
representation based on only the first beat entered
into the cluster, provided time-sample experiments
with significant performance increases while only
minimally affecting, if not harming, feature based
strategies. Algorithms 18 and 19 are identical
time-sample routines except that 19 uses averaging.
In figure 7, performance is seen to be noticeably
increased with averaging. Algorithm 3 is an averag-
ing version of algorithm 2, both evaluating feature
data. In figure 8, a minor drop in performance with
averaging can be noted.

8. Magnitude type normalization was found to be
significantly better than variance normalization.
No normalization was found to be intermediate. Fig-
ure 9 graphs all algorithms based on their normali-
zation procedure and shows the dramatic superiority
of the magnitude approach. Three algorithms differ-
ing only by their normalization, 2, 6, and 30 (un-
normalized, wvariance and magnitude normalized,
respectively), in figure 8 also demonstrate the
same relationship.
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Disscussion

Three conclusions are evident from the results.
First, it is possible to devise a workable meth-
odology for performing QRSMAC algorithm compari-
sons. Second, algorithm performance appears to
be most affected by the normalization strategy
in use. Variations in data representation or
similarity measure appear to have less impact on
algorithm functioning. In particular, "magnitude"
type normalization was seen to be much more
effective in the QRSMAC process as compared to
"yariance" methods. The use of template averaging
in time sample algorithms was also associated with
marked increases in strategy performance. Third,
performance of the best QRSMAC algorithm tested
could not be significantly improved through al-
gorithm embellishments such as wiggling or adding
a second ECG channel to the analysis. Finally,
although the study was very illuminating, we
recognize that it is in no sense an exhaustive
analysis of the QRSMAC process. Many areas of
algorithm variation are yet to be explored.
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