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Abstract

Standard methods of estimating the power spectral
density (PSD) of irregularly sampled signals such as
instantaneous heart rate (HR) require resampling at
uniform intervals and replacement of unusable samples.
The Lomb periodogram is a means of obtaining PSD
estimates directly from irregularly sampled time series,
avoiding these requirements. This paper compares Fourier,
autoregressive, and Lomb PSD estimates from synthetic,
real, and noise-corrupted real heart rate time series, and
examines systematic differences among these estimates. An
algorithm is presented for obtaining a heart rate time series
suitable for Lomb PSD estimation from an RR interval
time series with included ectopic beats and erroneous
measurements. The paper concludes with a brief survey
of other applications of the technique, such as estimation
of respiratory frequency from a time series of beat-by-beat
measurements of the mean electrical axis.

1. Introduction

Power spectral density estimation is a commonly-used
analytic technique for describing periodicities in time
series. Most non-trivial analyses of heart rate variability
(HRV) depend on PSD estimation. The instantaneous
heart rate time series used as the bases of these analyses
are sampled at intrinsically irregular intervals (if the RR
intervals were uniform, there would be no HRV to analyze).
Standard methods for PSD estimation, including Fourier
transform (FT) and autoregressive (AR) methods, operate
on time series with uniform intervals between samples.
To apply FT or AR techniques to heart rate time series
therefore requires that the series be resampled at uniform
intervals[1, 2, 3]. The resampling process alters the
frequency content of even a noise-free time series by
nonlinear low-pass filtering (Figure 1).

If the time series contains inappropriate or missing
samples (as, for example, in heart rate time series with
ectopic beats or noise), PSD estimates can be severely
affected, since impulse noise in the time domain is
transformed to broad-band “clutter” in the frequency
domain. In such cases, resampling is further complicated
by the need to infer probable values as replacements[4],
with the likelihood of further alteration of frequency

content[5]. For these reasons, some investigators analyze
only segments free of ectopy and noise[6]; this approach
runs the risk of introducing selection bias in HRV analysis,
however, since both ectopy and noise are correlated with
HRV-related factors such as physical activity.

Methods for PSD estimation based directly on irregularly
sampled time series have been used, though not in
HRV analysis, since at least 1976[7, 8]. Methods such
as the Lomb periodogram entirely avoid the problems
associated with resampling and sample replacement. The
high computational burden of these methods has been
a major obstacle to their general use[9] until recently.
In 1989, Press and Rybicki published a fast algorithm
for obtaining an arbitrarily accurate approximation to the
Lomb periodogram[10, 11]. The remainder of this paper
illustrates how the Lomb periodogram, obtained using the
Press-Rybicki algorithm, may be applied to analysis of
HRV and related signals.

2. Examples

Several HR time series are presented below, together
with the corresponding Lomb, FT, and AR spectra. In
each case, an irregularly sampled instantaneous heart rate
(IHR) signal was obtained from an RR interval time series
using the algorithm given in the appendix, and this signal
was used as input to the Press-Rybicki algorithm to obtain
the Lomb periodogram. A regularly sampled instantaneous
heart rate signal[3] was obtained from the same RR series;
this signal (five minutes in length in each case, and sampled
at 2 Hz) was zero-meaned, detrended, zero-padded to a
length of 1024 samples, and Welch windowed, and the
result was used as input to standard fast Fourier transform
(FT) and autoregressive model (AR) algorithms for PSD
estimation[11]. In the examples shown here, the AR models
are of order 24. The Lomb and AR spectra can be evaluated
for any desired frequencies; for purposes of comparison, all
spectra were evaluated at the discrete frequencies defined
for the Fourier spectra.

To demonstrate the essential similarity of FT, AR, and
Lomb PSD estimates, synthesized HR time series are shown
in Figures 1 and 2. These five-minute sequences were
generated using a recurrence of the form
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Figure 1. Synthesized HR time series and corresponding
spectra (see text). In Figures 1–5, the upper trace is the
resampled HR series used to derive the FT and AR spectra;
below it is the IHR series (offset by 25 bpm for clarity)
used to derive the Lomb spectrum. The lower panel shows,
from top to bottom: the Lomb spectrum (heavy line); the
AR spectrum (dotted line); and the FT spectrum (thin line).
For clarity, the AR and FT spectra are offset by ���

+
and �����

units respectively.
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where
�����

is the RR interval beginning at
���

,
,

is a
random variable evenly distributed between -1 and 1, and
the remaining parameters are arbitrary constants. For the
simulation shown in Figure 1, both

� 

and

� #
are 0, so

that the sequence contains randomly-varying intervals with
a mean of

���
(1 second in the simulations shown here).

The Lomb periodogram of this sequence is consistent with
white noise, whereas the FT and AR spectra show the
high-frequency (HF) attenuation expected as a result of
the resampling process. In Figure 2,

� 

and

� #
are equal

and larger than
� +

;
� 


and
� #

are chosen to modulate
the RR intervals at frequencies of 0.05 and 0.41 Hz,
to simulate sympathetically-mediated low frequency HR
oscillations and parasympathetically-mediated respiratory
sinus arrhythmia. The three spectra are quite similar, apart
from the HF attenuation in the FT and AR spectra, and the
lack of detail/clutter in the AR spectrum.

The sequence in Figure 3 was obtained by automated
analysis of an ECG signal acquired from a subject with
sleep apnea syndrome; the low frequency modulation of
heart rate with a period of roughly 45 seconds matches the
frequency of the subject’s obstructive apneas. Although
the spectral peak near 0.025 Hz is most obvious in the AR
spectrum, it is also clearly visible in both the Lomb and the
FT spectra, which also reveal the harmonically related peak
near 0.05 Hz.

The sequence in Figure 4 was obtained by automated
analysis of the same signal used in Figure 3, after addition
of electrode motion artifact scaled to obtain a signal-to-
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Figure 2. Synthesized HR time series and corresponding
spectra (see text).

noise ratio of 12 dB. Roughly 30 QRS detector errors
resulting from the added noise are readily discernible
in the time series. Although much of the sequence is
rejected by the algorithm that prepares input for the Lomb
periodogram, the peak near 0.025 Hz is still prominent, and
the first harmonic also remains visible. The 0.025 Hz peak
is visible but not significant among the clutter in the FT
spectrum, and the AR spectrum has no significant features.

By rejecting the outliers and using a predictive
interpolator to obtain replacement samples, as shown in
Figure 5, the 0.025 Hz peak emerges as a broad feature
in the AR spectrum, but the FT spectrum shows a broad,
spurious peak at about 0.015 Hz.

Other irregularly-sampled time series frequently appear
in HRV-related studies. Among those amenable to
Lomb PSD analysis are respiration intervals and tidal
volumes, gait, and beat-by-beat systolic blood pressure
measurements. As a final example, Figure 6 shows a
time series of beat-by-beat measurements of the mean
cardiac electrical axis, which fluctuates in response to
respiration[12]; the Lomb spectrum clearly reveals the
respiratory frequency.

3. Conclusions

Lomb and FT spectra are derived using � �	��
���
��  

algorithms, and AR spectra are derived using an algorithm
that is only slightly slower for reasonable choices of model
order. The essential similarity of the Lomb, FT, and AR
spectra given ideal inputs, considered in light of their
similar computational demands, suggests that there may
be little reason to choose one over any other. When
considering the less-than-ideal inputs endemic to HRV
studies, however, only the Lomb method produces robust
PSD estimates in the presence of noise and ectopy. The
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Figure 3. HR time series and spectra during periodic
obstructive apneas.
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Figure 4. HR time series from Figure 3, corrupted by added
noise, with corresponding spectra.

Lomb method avoids all of the complications and pitfalls of
resampling and replacement of outliers, and introduces no
drawbacks of its own; in consequence, it is the method of
choice for PSD estimation of heart rate.
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Figure 5. HR time series from Figure 4, corrected using
a predictive interpolator, with corresponding AR and FT
spectra.
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Figure 6. Electrical axis time series (above), with Lomb
spectrum (below).
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Appendix

The C program below generates an instantaneous heart
rate (HR) signal suitable for Lomb PSD estimation. Its
input should be a two-column list of beat arrival times (in
seconds) and beat type codes (1 for normal beats, any other
value for other types of beats). The output contains a subset
of the beat arrival times, with a sample of the HR signal (in
units of beats per minute) following each time. The scanf
and printf statements may be replaced if different input
or output formats are required.

Note that this algorithm aggressively rejects intervals
likely to be outliers (whether due to ectopic beats, falsely
detected beats, missed beats, or simply mismeasured beat
arrival times). When used to derive a Lomb PSD estimate,
this strategy works well, and permits robust derivation of
spectra even from highly corrupted time series.

When deriving FT or AR spectra, less stringent criteria
must be used, since the cost of deleting samples is high
(either they must be replaced, or the entire time series must
be discarded).

#include <stdio.h>
#include <math.h>
#define NORMAL 1
#define OTHER 2
#define TOL 10 /* tolerance (bpm) */

main()
{

double ihr, ihrp, mhr = 70., t, tp;
int b, bp = OTHER;

while (scanf("%lf%d", &t, &b) == 2) {
if (b == NORMAL) {

ihr = 60./(t - tp);
mhr += (ihr - mhr)/10.;
if (bp == NORMAL &&

fabs(ihr - ihrp) < TOL &&
fabs(ihr - mhr) < TOL)
printf("%g %g\n", tp, ihr);

bp = NORMAL;
tp = t;
ihrp = ihr;

}
else

bp = OTHER;
}

}
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