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Abstract
The ST-T segment of the surface ECG reflects cardiac repo-

larization, and is quite sensitive to a number of pathological
conditions. ST-T changes generally affect the entire wave-
shape, and are inadequately characterized by single features
such as depression of the ST segment. Metrics which rep-
resent overall waveshape should provide more sensitive indi-
cators of ST-T wave abnormalities. This study presents a
Karhunen-Loeve Transform (KLT) technique for the analy-
sis of the ST-T waveform. This technique recovers mazimun
information from a minimum number of parameters for a
given set of waveforms. The training data yielded o KL basis
set which concentrates 90% of the ST-T signal energy in the
first four coefficients. The KL technique was used to analyze
the ST-T complexes in the ESC ST-T database. KL coeffi-
cients were plotted as a function of time, and were effective
in detection of transient ischemic episodes. Twenty percent
of the records showed bursts of periodic ischemia suggesting
local vascular instability.

1. Introduction

The ventricular repolarization (VR) process of the heart
can be observed indirectly in the electrocardiogram during
the ST-T complex. Variations in VR, observed as variations
in ST-T morphology, reflect a variety of pathologies that ac-
count for a high incidence of sudden cardiac death (SCD) in
developed countries. Disorders in VR may result in increased
susceptibility to ventricular fibrillation (VF), which leads to
SCD within minutes without intervention.

At present, there are no generally accepted non-invasive in-
dices of the risk of SCD. Indices derived from isolated features
of the ST-T complex are commonly used to describe VR, a
practice that reflects the difficulty of deriving integrated mea-
surements using visual analysis. Given the significance of the
spatiotemporal evolution of VR throughout the entire ST-
T complex, there is good reason to believe that differential
measurements such as ST levels [1] and QT intervals fail to
represent significant features of VR. These considerations led
us to develop an analytic technique based on the Karhunen-
Loéve transform (KLT) and entire ST-T complex.

The KLT (2] is a signal-dependent linear transform that is
optimal in the following sense: for any given number of pa-
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rameters n, if the input is reconstructed from the first n terms
of the series expansion of a linear transform, the lowest ex-
pected mean-squared error will be obtained if the transform
is chosen to be the KLT. Then it concentrates the maximum
signal information in the minimum number of parameters,
and it defines the domain where the signal and noise are most
separated. A KLT for a given type of signal must be derived
from the statistics of examples of that signal. Thus, a signif-
icant limitation of the KLT is that it is necessary to collect a
representative “training” set of the signals to be analyzed, in
order to derive the KLT basis functions (eigenfunctions). The
performance of the KLT depends on how well the training set
has been constructed.

In this study, we have applied the KLT to the entire ST-
T complex, in order to include as much information about
VR as possible. We selected a large training set, includ-
ing recordings from the MIT-BIH Arrhythmia Database CD-
ROM ([3], from the European ST-T Database [4], from a col-
lection of ECG recordings of healthy subjects gathered at
Boston’s Beth Israel Hospital (BIH), and from a collection of
SCD recordings assembled at BIH from several sources.

We apply these techniques to ECG records from the Euro-
pean ST-T Database, and we show how the first and second
k! series may be used to monitor ST segment changes in these
records. We illustrate this point with examples of periodic
behavior of the ischemic process within these records.

2. The Karhunen-Loéve transform

We represent each ST-T complex first by a pattern vector,
x, the components of which are the time-ordered samples of
the ST-T complex (after baseline correction and normaliza-
tion). The KLT is a rotational transformation of a pattern
vector into a feature vector, the components of which are
the coefficients of the KLT. As shown below, the first few
components of the feature vector represent almost all of the
signal energy, and the remaining components need not even
be computed.

The derivation of the KLT basis functions begins by esti-
mating the covariance matrix C of the pattern vectors of the
training set {2],

C = E{(x — m)(x — m)"} (1)

where m is the mean pattern vector over the entire training
set. The covariance matrix reflects the distribution of the
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pattern vectors in the pattern space. The orthogonal eigen-
vectors of C are the basis functions of the KLT, and the eigen-
values, Ay, represent the average dispersion of the projection
of a pattern vector onto the corresponding basis function.
After sorting the eigenvectors in order by their respective
eigenvalues, such that Ay > Apyy, for k=0,1,...., N — 1, the
corresponding basis functions are arranged in order of rep-
resentational strength. The basis function corresponding to
the largest eigenvalue is that function best able to represent
an arbitrary pattern vector from the training set; the next
function is the (orthogonal) function best able to represent
the residual error obtained from fitting the first function, etc.
The value of N is equal to the number of components in the
pattern vector, and depends on the length of the waveform
and on the sampling frequency; in this case the length is 600
ms, and the sampling frequency is 250 Hz, so that N = 150.
In this study, the mean pattern vector m can be forced to
be zero, if we assume that each ST-T complex in the train-
ing set can represent both itself and its inverted counterpart.
This represents the possibility that any ST-T complex may
appear inverted simply as an artifact of the choice of the
lead polarity when recording the ECG. Thus, the covariance
matrix may be expressed simply as
C = E{(x)(x)"} )
and the eigenvalues, rather than representing the average dis-
persion of the ST-T projection onto the associated basis func-
tion, instead represent the average energy of this projection.

2.1. The training set and basis functions

To obtain a representative training set of normal and ab-
normal ST-T waveforms we have selected a wide variety of
ECG records, 105 in all (15 from the MIT-BIH Arrhythmia
Database, 6 from the MIT-BIH ST Change Database, 13
from the MIT-BIH Supraventricular Arrhythmia Database,
10 recordings of healthy subjects from BIH, 33 from the
European ST-T Database, 4 from the MIT-BIH Long-Term
Database and 24 from SCD recordings collected at BIH).
From each of these 105 recordings, a 15-minute excerpt was
selected. Since the noise discrimination power of the KLT de-
pends on the distribution of the pattern vectors as reflected in
the covariance matrix, we tried to avoid including segments
that were obviously corrupted by baseline wander or other
noise.

From these 105 fifteen-minute records, we have selected the
training set of ST-T complexes according to the following
procedure. First, QRS complexes were detected and labeled
using ARISTOTLE software [5]. We defined the ST-T complex
as the portion of the signal within a window beginning 85 ms
following a QRS mark, ¢;, and ending 240 ms prior to the
next QRS mark, ¢;4,. If the RR interval, rr; (defined as the
interval between the QRS marks), is less than 720 ms, the
end of the window is located at g; + %rr; (i.e., 2/3 of the way
from the initial QRS mark to the following one).

To avoid the effects of ectopic and other abnormal beats on
the ST-T complex, we accepted only ST-T complexes associ-
ated with QRS complexes labeled as normal by ARISTOTLE
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(6], and further required that both the previous and follow-
ing QRS complexes be also labeled as normal. For each beat,
we estimated the isoelectric level as the average signal value
during the 20 ms interval beginning 80 ms prior to the QRS
mark. Beats for which the estimated isoelectric level differed
by more than 0.2 mV from that of the previous or following
beat were excluded from the training set. We then manu-
ally rejected a small number of ST-T complexes we judged
subjectively to be particularly noisy. The remaining 97,663
ST-T complexes formed the training set. We also used cubic
splines for baseline removal.

The pattern vectors were normalized by magnitude (i.e.,
scaled such that the signal energy was constant); in this way,
each pattern vector is accorded equal importance when deriv-
ing the KLT basis functions. Since the durations of the ST-T
complexes vary (the final part of the ST-T complex is not
always available due to the appearance of the next P-wave
and QRS complex), the estimation of certain elements of the
covariance matrix is problematic. We address this issue by
estimating each element of the covariance matrix using only
those ST-T complexes for which the corresponding elements
are available. This procedure avoids introducing artifacts of
the window definition into the covariance matrix estimate;
its consequence is that the final portions of the derived basis
functions are derived from a smaller sample than the initial
portions.
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Figure 1: KLT basis functions. The solid lines show functions
derived without HR correction, while the dashed lines show

functions derived with Bazett’s correction.

We have got that this representation permits about 90%
of the signal energy to be represented by the first 4 kI co-
efficients. The first 6 KL basis functions are displayed in
figure 1 (solid lines) together with those from Bazett’s cor-
rection of the trayining set (dashed lines). It is apparent that
the energy in the corrected set is concentrated at a later time
than in the uncorrected set. Since most heart rates exceed
60 beats per minute, the correction applied to most ST-T
complexes tends to stretch them (i.e., to move the concen-
tration of energy toward the end of the window). The first
basis function, and to a lesser extent the second one, rep-
resent the dominant low-frequency components of the ST-T
complex concentrated in the first 400 ms after the QRS. The
next few basis functions contain more high-frequency energy,
and contain energy more evenly distributed across the entire




complex. These functions represent components present in
abnormally prolonged ST-T complexes and in U waves where
present within the window. The remaining higher-order ba-
sis vectors contain almost exclusively high-frequency content
related to noise in the training set. By inspection of the basis
vectors, we can predict that the first two KL coefficients, klg
and kl;, should be a good tool for detecting ischemic ST-T
changes, since they contain virtually all of the low-frequency
energy.

2.2. KL representation of the ST-T waves
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Figure 2: Reconstruction of a ST-T complex with the KL
transform.

In figure 2 we present the reconstruction of a ST-T com-
plex with 3, 5 and 8 KL coefficients, using uncorrected (a)
and HR-corrected KL basis functions (b). The complex in-
cludes a prominent U wave. Since this feature is unusual, U
waves were not common in the training set, and a faithful re-
construction requires more than the first few KL coefficients.
The RR interval in this case is 1228 ms, implying only a small
HR correction; we see, however (fig. 2b) how this small shift
to the left results in a markedly better reconstruction with
the low order coefficients. At the right, the cumulative signal
energy (CE(n) = 100 X2 ki?/ YN, STT?(k)) is shown for
each reconstruction.

3. Monitoring the k!l series

In previous sections we have described how to derive a KLT
representation of the ST-T complex. In clinical practice, the
dynamic behavior over time of ST-T morphology is even more
important than are the characteristics of an isolated complex.
ST-T dynamics can be characterized by the study of KL co-
efficient time series, k!, using many of the techniques used in
studies of HRV. We can assign to each beat mark (QRS fidu-
cial point) the KL coefficients of its ST-T complex. In this
way we will have as many (scalar) time series as there are KL
coefficients needed to represent the ST-T complex. The di-
rect way to monitor kl is to obtain it from the inner product
of the KL basis with the pattern vectors of the ST-T com-
plexes to be analyzed. These pattern vectors are obtained
in the same manner as those in the training set (using cubic
spline baseline removal).In this case, however, we do not nor-
malize the energy of the ST-T complex pattern vectors, since
we are interested in monitoring variations in energy as well
as in morphology. The inner product is performed over the
interval in which the ST-T complex is defined (not necessar-
ily the entire window over which the basis function extends);
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this policy is equivalent to appending additional zero compo-
nents to the pattern vector as needed to match its length to
that of the basis function.

Direct estimation in this way, however, results in a noisy ki
time series. Noise is introduced into the kI time series from
a variety of sources, including noise in the ST-T complexes
not removed by the KLT, residual error in the KL domain
representation of the ST-T complexes, misestimation of the
isoelectric level (because of noise in the PR interval, or QRS
fiducial misestimation), residual baseline variations, and ec-
topic beats not rejected. Noise in the k! time series may
be reduced using an adaptive filter that removes noise un-
correlated with the ST-T complex. This technique is useful
for monitoring medium- to long-term variations in the ST-T
complex, such as for detecting ischemic ST-T changes; when
we are interested in beat-to-beat variations (alternans), di-
rect kl estimation is necessary.

Adaptive estimation of quasi-periodic signals such as the
ST-T complex permits reduction of noise uncorrelated with
the signal, with attendant improvements in the ability to
track subtle dynamic variations in these signals. It makes
use of the recurring features of the signal and is based on the
adaptive linear combiner [7].

3.1. Application to ischemic ECG signals

In this section we present the results of estimating and
monitoring the kl values on several real ECG records. The
parameters that we have selected for the LMS adaptive es-
timator are g = 0.1, with n = 4 KL base functions and
N = 150 msamples.

Figure 3 illustrates k! time series, each two hours in length,
for three ECG records from the European ST-T database.
Fig. 3a compares the kly series of record 0103 for each of
the two recorded ECG signals, estimated as the inner prod-
uct between the ST-T complex and the KL basis function.
Fig. 3b shows the same series, obtained using the adaptive
estimator with the parameters as given above, and showing
a SN R improvement of about 10 dB compared with those of
fig. 3a. Note the simultaneous appearance of ischemic ST-T
changes in both signals, but with different characteristic pat-
terns, repeated quasi-periodically. The figure clearly shows
eight ischemic episodes, corresponding to the eight kl series
peaks; only five of these are marked in the database refer-
ence annotations, since three of these episodes (1th, 2th, and
7th) are below the standard thresholds for marking ischemic
ST-T episodes. The technique we present allows these sub-
threshold episodes to be identified unambiguously, and allows
the long-term pattern of quasi-periodic ischemic change to be
observed more clearly than would be possible otherwise.

Fig. 3c shows the ki (left) and kl; (right) series of the
first ECG signal {only) of record 0105, and fig. 3d shows
their adaptively estimated counterparts. In this case, each
of the seven peaks corresponds to an ischemic ST-T episode
marked in the database reference annotations. By study of
two or more KL coefficients in a single lead, we can easily
monitor changes in ST-T morphology as well as changes in
ST level.
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Figure 3: kl plots for three records of the European ST-T
Database. Panels (a) and (b) present kly time series of record
e0103 estimated directly from the inner product (a), and with
the adaptive estimator (b); those on the left correspond to the
first ECG signal, and those on the right to the second ECG
signal. Panels (c) and (d) show the kly time series for record
e(105 on the left, and the kl; time series for the same record
on the right. Panels (e) and (f) illustrate the uncorrected ki,
time sertes for record e0113 on the left, and the corresponding
HR-corrected kly time series on the right.
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Finally, in fig. 3e are shown the uncorrected and HR-corrected

kly time series for the first ECG signal of record e0113, and
in fig. 3f their adaptively estimated counterparts. As in the
previous examples, the adaptive estimation of ST morphol-
ogy tracks ischemic changes noted in the reference annotation
files of the database. Note the slightly higher amplitude of
the peaks in the HR-corrected series, showing that the first
corrected k! basis function is better able to represent the ST-
T complexes in this record than is the first uncorrected kl
basis function. In fig. 3f, we note eight well-marked peaks
that correspond to the seven marked in the database refer-
ence annotations, and one other (the second) that was not so
marked, although it is quite clear from inspection of the k!
series.

Analyzing the entire European ST-T Database (90 records)
we found that roughly 20% of the records present these quasi-
periodic ischemic ST-T changes, and that in another 20%
more than one ischemic ST-T episode exhibit similar pattern
in their associated kl time series.

4. Conclusions

In this work we have presented a KLT technique for study-
ing the repolarization period of the heart throughout the ST-
T complex of the ECG signal. We have developed a KLT
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training set of ST-T complexes, containing a broad range of
morphologies, to obtain the KL basis vectors. We have shown
that this representation permits about 90% of the signal en-
ergy to be represented by the first 4 k! coefficients. The KLT
has been used to detect ST-T shape variations, with results
demonstrating its suitability for detecting ST variations re-
lated to ischemic events. We have used an adaptive filter,
for improving the signal-to-noise ratio of a time series of KL
coefficients delivering an improvement of about 10 dB for a
practical choice of parameters for monitoring ischemic ST-T
changes.

In demonstrating the application of these techniques to
analysis of the European ST-T Database, we have shown that
about 20% of the records present a quasi-periodic pattern of
ischemic ST-T activity, and another 20% exhibit repetitive
but not clearly periodic patterns of ischemic ST-T changes.
These observations are drawn from analysis of the entire ST-
T complex; it would be difficult if not impossible to reach
similar conclusions with confidence using classical differential
measurements of ventricular repolarization such as measure-
ments of ST level.
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