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Summary

We describe robust methods for deriving Karhunen-
Loéve (KL) basis functions which can be used to represent
the QRS complex. Using a five term KL expansion of a 200
millisecond interval which includes the QRS complex and
part of the ST segment, we can represent morphology on two
simultaneous ECG leads with sufficient fidelity for beat
classification. The residual error of the representation is an
ideal estimate of the instantaneous noise content of the sig-
nal, and permits identification of events for which the mor-
phologic information is unreliable. We have compared the
performance of our current KL-based arrhythmia analysis
program with its predecessor (which uses a set of time-
domain features for morphology representation, but is other-
wise identical to the newer program). In evaluations using
the MIT-BIH and AHA databases, and a newly developed
database containing approximately 2.5 million annotated
beats (including over 80,000 PVCs) from 27 long-term ECG
recordings, we found that beat classification errors using the
KL transform were as little as one-fourth of those for the
older program.

QRS morphology representation

Representation of QRS morphology in terms of a set of
numerical parameters is a critical step in automated ECG
analysis. If the ECG has been well-sampled (i.e., frequency
band-limited and sampled at a rate no less than twice the
highest frequency present in the signal), the QRS complex
can be reconstructed from samples in the neighborhood of the
R-wave peak with sufficient fidelity to permit accurate visual
analysis. We define the n-dimensional QRS pattern vector,
x, by selecting n baseline-corrected samples surrounding the
R-wave peak, each of which is a component of x. Such a set
of samples thus contains sufficient information for analysis;
in general, however, its information content far exceeds what
is necessary. Much of the information encoded into x is
redundant, and much of the rest is not relevant to the prob-
lem of analyzing the ECG (for example, it may be a faithful
representation of noise).

A well-chosen method for data reduction can retain
information related to the signal while discarding information
related to noise and artifact. For example, bandpass filtering
the ECG is equivalent to data reduction in the frequency
domain. It is effective because it can remove extraneous
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components of the signal which are unrelated to cardiac
electrical activity. The effectiveness of bandpass filtering for
noise rejection is limited, however, since noise is not com-
pletely separable from the signal in the frequency domain.
The domain in which noise and signal are most separable is
that of the Karhunen-Loéve transform (KLT). This can be
shown to follow directly from the definition of the KLT.

The Karhunen-Loéve transform

The discrete KLT is a rotational transformation of an
n-dimensional Euclidean pattern space, E”, derived from a
model of the probability density function of the pattern vec-
tors, x. The probability density function is usually estimated
from observations of the distribution of x for a large,
representative sample of patterns. If we observe the distribu-
tion of x for a large collection of QRS complexes, we find
that most of the volume of E” is devoid of observations. To
the extent that the value of a given sample is predicted by
those adjacent to it, we find that QRS vectors cluster in small
volumes of E".

Using only second-order statistics, we can model the
distribution of x as a hyperellipsoid with principal axes which
are defined by the eigenvectors, e, of the sample covariance
matrix

C = E {(x-m)(x~m)’}

where m is the mean pattern vector. The lengths of the axes
are given by the corresponding eigenvalues, A .

Since the n eigenvectors are mutually orthogonal, they
span the original pattern space E". If they are sorted by
eigenvalue such that

7“[( > lk+l’ k=l,2,...,n—1

we may expect that, on average, the projection of a pattern
vector onto the ordered eigenvectors will have the property
that

x'e; 2 x'ep

We may thus construct i -dimensional feature vectors, y;, the
components of which are given by the first i such projec-
tions, 1 £i < n; the process of doing so is defined as the
discrete KLT. The eigenvectors are the KL basis functions,
analogous to the sine functions which are the basis functions
of the Fourier transform. The components of y; are called
the KL coefficients, or the principal components, of x. For



i <n, the KLT has the property that the expected value of
the residual error, ; = lly;—x|Il, is minimum among all possi-
ble i-dimensional linear transformations of the pattern space,
for pattern vectors which belong to the distribution modelled
by C. Thus, for any desired reduction in dimensionality, the
KLT is an optimum linear transformation. Furthermore, for
pattern vectors within E” which do nor belong to the distri-
bution modelled by C, the expected value of r; is maximum
among all possible linear transformations of the pattern
space, for any choice of i < n. Provided that the distribution
of x is non-uniform, this last property of the KLT suggests
that outliers may be identified by the values of r; for suitably
chosen values of i.

Applying the Karhunen-Loéve transform to the ECG

The discussion above has implicitly assumed that it is
feasible to model the distribution of all pattern vectors as a
single hyperellipsoid. Given the diversity of QRS morpholo-
gies observed in the ECG, however, it is not obvious that this
assumption is reasonable for QRS pattern vectors. Our prel-
iminary investigations were consistent with the results
reported by Nygfrds and S6mmo,! who found that the first
11 (of 64) eigenvectors determined from a population of nor-
mal QRS complexes were virtually identical to those deter-
mined from a population of ectopic QRS complexes. Based
on these observations, we adopted the single-hyperellipsoid
model for further study.

The prerequisite to applying the KLT to ECG analysis is
derivation of the eigenvectors, for which a variety of methods
may be employed. It is necessary to obtain a large, represen-
tative sample of QRS waveforms (the ‘‘training set’’). We
used the 44 non-paced records of the MIT-BIH Arrhythmia
Database? for our training set. Approximately 100,000 QRS
complexes were identified using an automated QRS detector.
Approximately 200 false detections were found by com-
parison with the reference annotations for the database; these
were discarded. (There were also approximately 200 QRS
complexes missed by the detector.) The QRS detector,
operating on two ECG leads simultancously, determined a
fiducial point for each detected complex by computing the
“‘center of mass’’ of peaks in the output of the matched
filters used for QRS detection. This technique places the
fiducial point at or near the major deflection for a mono-
phasic waveform, and midway between the major deflections
of a biphasic waveform, thus avoiding discontinuities in
fiducial point placement in the context of subtle morphologic
variability. For baseline removal, the ECG was digitally
high-pass filtered by subtraction of a phase-corrected one-
second moving average.

For each QRS complex, we obtained 24 baseline-
corrected samples from each of the two ECG leads during a
200-millisecond period which began roughly 60 milliseconds
before the fiducial point. (The original signals, digitized at
360 samples per second, were decimated by a factor of three
at this time.) These samples defined the components of the
QRS pattern vectors which we studied.

Estimation of the eigenvectors is complicated by the
presence of noise in the database. Several investigators have
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proposed methods for robust estimation of principal com-
ponents. These include techniques for estimating the covari-
ance matrix using M -estimators3 and projection-pursuit,? for
estimating the correlation matrix using multivariate trim-
ming,5 as well as for estimating the eigenvectors directly
from the sample distribution.® Estola and Jokipii’ have inves-
tigated the robustness of the discrete KLT in this application,
and have compared its discriminating power with that of the
Fukunaga-Koontz transform, which requires a priori
knowledge of the cluster means. They emphasize the
influence of jitter (suboptimal fiducial point estimation) on
the outcome, and suggest that the discriminating power of the
KLT may be enhanced if the training set has jitter compar-
able to that which will be encountered in the ultimate appli-
cation. In the current study, this condition is satisfied as a
consequence of having obtained the pattern vectors in the
training set by use of the same QRS detector and fiducial-
point location method as is used in the complete KLT-based
ECG analysis program.

Our approach makes use of multivariate trimming to
obtain a robust sample covariance matrix. For each of the 44
records, we performed an initial clustering and estimated the
cluster means. Using 90% of the members of each cluster
(those nearest the estimated mean, using a Mahalanobis dis-
tance metric), we calculated trimmed cluster means. We
repeated this step twice (using the trimmed mean from the
previous iteration as the estimate each time); there were
essentially no changes in the estimated means between the
last two iterations. Using a kernel-approximation method
based on approximately 300 estimated cluster means and
populations, we obtained a covariance matrix, from which we
calculated first-order eigenvectors using standard techniques.
We then repeated the entire procedure, reclustering using
feature vectors obtained by applying the first-order KLT to
the pattern vectors. The second-order eigenvectors obtained
at the end of this process differed only slightly from the
first-order set. In figure 1, the components of these eigenvec-
tors (the KL basis functions) are plotted as functions of time.

All of the computation described thus far can be per-
formed off-line. In the course of on-line ECG analysis, per-
forming the KLT requires minimal calculation (in our case,
48 integer multiplications and additions per KL coefficient
per QRS complex). The motivation for performing the KLT

Figure 1. The first six QRS eigenvectors (KL basis func-
tions), plotted as functions of time. (Note that each basis
function has components related to each of two ECG leads.)



in this case is to obtain robust estimates of a few descriptive
parameters of the signal (enough to perform reliable cluster-
ing) and to differentiate reliable from unreliable morphologic

data. For this reason, only a small fraction of the 48 KL

coefficients needs to be determined. Figure 2 illustrates a
simple case in which two KL coefficients suffice to describe
the QRS complexes adequately; as noted below, we find that
five KL coefficients are sufficient in general for our ECG
analysis program.
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Figure 2. Representation of QRS waveforms by summation
of KL basis functions. The original ECG is shown at the top
of the figure (the second lead is not shown). The first and
second KL coefficients (@ and b), and their contributions to
the representation of the QRS complexes, are shown in the
center of the figure. In the lower part of the figure, the three
numbered QRS complexes are mapped onto the a—b plane,
illustrating how the KLT preserves morphologic similarities
and differences in preparation for clustering.
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Noise estimation using the KLT

Noise remains the major source of error for state-of-
the-art arrhythmia analysis programs, which usually perform
well given clean ECGs. We have also applied the KLT to
the problem of identifying noise which might lead to errors
in analysis. The KLT can represent any input, clean or
noisy, given enough coefficients. Using only a few
coefficients, however, we can represent most clean inputs
much more accurately than most noisy inputs. This observa-
tion leads us to use the residual error, r;, of a truncated KLT
as an estimate of noise content.

Most other methods for detecting noise in the ECG,
including those we have described previously, are based on
analysis of the ECG baseline. Such methods cannot succeed
in detecting noise bursts which are confined to the QRS com-
plex, which are not uncommon. The present approach has
the significant advantage of operating on only that portion of
the signal (the QRS complex) in which noise can affect the
accuracy of the analysis.

Using a technique we have described previously,9 we
added high-level electrode motion artifact noise to portions of
clean ECG records from the MIT-BIH database, choosing the
noise level so as to obtain roughly equal numbers of correctly
classified beats and errors from our detector. We used ECG
records which, without the addition of noise, presented no
difficulties to our detector in order to isolate the effects of
noise, and we disabled the detector’s shut-down logic for this
experiment in order to obtain a sufficient number of errors.
The correctly-classified beats included essentially all of the
beats in the noise-free periods of the input, as well as those
beats from the noisy periods which were still recognizable.
The errors included both noise-corrupted beats and false QRS
detections.

We then measured the residual error, r;, for correctly
classified beats and for errors, for various values of i. As
expected, the residual errors for both groups decrease with
increasing i, but those for the correctly classified beats (i.e.,
those from the clean segments of the input signals, and those
from the noisy segments which were still recognizable) were
lower on average than were the residual errors for the
incorrectly classified beats at all values of i. The difference
between the averages increases with i for small values, as the
KL representation of clean QRS complexes improves rapidly.
The KL representation of the errors also improves steadily as
i increases, however, and the difference between the average
errors begins to decrease beyond i = 5. Figure 3 illustrates
the results of this experiment for a typical record.

Evaluation

We evaluated our methods using the AHAC and MIT-
BIH databases, and a newly-developed database containing
approximately 2.5 million annotated beats (including over
80,000 PVCs) from 27 long-term ECG recordings. Table 1
summarizes the results. We compared the performance of
our current KLT-based analysis program with that of its
predecessor. The older program uses time-domain features
for QRS morphology representation and noise estimation, but
is otherwise identical to the newer one; hence the marked



improvement in PVC detection is attributable entirely to the
advantages of the KLT over the time-domain features. (Most
of the missed PVCs in the AHA database were in records
7009 and 8007, both of which contain more PVCs than nor-
mal beats and present difficulties to the cluster-labelling logic
which is common to both programs. Excluding these two
records, the PVC sensitivity and positive predictivity are
97.56% and 93.27% rtespectively using time-domain features,
and 97.06% and 95.47% using the KLT.) In tests using the
long-term database, we found that the number of missed
PVCs was reduced by a factor of four using the KLT as
compared to the time-domain features. Less dramatic but
still significant improvements were noted for the KLT-based
method in analysis of the MIT-BIH and AHA databases.

Figure 3. Histograms of normalized residual errors, r;/I1x1,
of the KL morphology representation for correctly classified
beats (heavy lines) and incorrectly classified beats (thin lines)
of a typical record. The six panels illustrate how the error
distributions change with the number of KL coefficients (i).

TDF KLT
Database PVCSe PVC+P | PVCSe PVC+P
AHA 91.20%  93.00% | 91.08%  94.85%
MIT-BIH 91.90%  89.46% | 93.12%  94.76%
Long-term | 74.51%  97.36% | 9273%  96.92%

Table 1. Comparison of the performance of two versions of
the same arthythmia detector. The TDF version uses time-
domain features we have described previousty? and was the
subject of optimization efforts between 1981 and 1988. The
KLT version is identical except that the components of its
feature vectors are KL coefficients, as described in the text.
The figures of merit are gross PVC sensitivity (PVC Se) and
positive predictivity (PVC +P), as defined by the AAMLH
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Conclusions

We have described a method for deriving a robust QRS
morphology description and noise estimation based on the
KLT. The QRS morphology description is exceptionally
concise (requiring only five integers to describe the QRS
complex and a portion of the ST segment on two leads) and
is unaffected by moderate amounts of noise. Given noise of
sufficiently high amplitude, the signal becomes unrecogniz-
able and the KL coefficients do change; the residual error
also increases, however, permitting us to avoid classification
error by identifying events in which the morphologic infor-
mation is unreliable because of the likelihood of noise con-
tamination. In a comparison of the performance of a KLT-
based ECG analysis program against a similar program which
uses time-domain features, beat classification errors were
shown to be significantly lower for the KLT-based method.
These results suggest that the KLT is highly effective at
retaining the information necessary for an accurate analysis,
while rejecting noise and artifact.
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