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Abstract

The neural network model provides a framework for
studying applications of nonlinear transformations to
signal processing. We compared neural networks de-
stgned for ECG compression and classification with op-
timum linear methods. We found that simple neural
networks with one hidden layer approach the perfor-
mance of linear methods but offer no advantage over
them. Suitably constructed networks with more than
one hidden layer, however, can perform more efficient
ECG compression than is possible using linear methods
under the same constraints.

1 Introduction

Artificial neural networks (ANNSs) are of interest in sig-
nal processing applications because they can be trained
to extract the essential features from a set of known
signals, and then can use these features to process un-
known signals. Their major strengths lie in their ability
to recognize or correctly classify patterns which have
never been presented to the network before. Much of
the recent interest in neural computing has resulted
from the development of effective algorithms for de-
signing and training networks of various topologies [1]
[2].

In signal processing, neural networks have proven
useful in classification and dimensionality reduction.
Iwata et al. [3] have described a neural network which
can compress an ECG which it has been trained to
represent. Typically, an ANN constructed for this pur-
pose has many input units, an equal number of out-
put units, and a small number of hidden units [4]. It
is trained to perform the identity transform, i.e., the
network parameters are iteratively adjusted until the
outputs closely approximate the inputs for all of the
signals in the training set. Once this has been done,
the network parameters are recorded, the input and
hidden layers are used for compression, and the out-
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put layer is used for reconstruction. To compress the
signals, they are presented to the input layer, and the
outputs of the hidden layer are recorded. At any later
time, the recorded hidden-layer outputs may be pre-
sented to the output layer to obtain a reconstruction
of the original signals. The compression achieved is a
function of the ratio between the number of inputs and
the number of hidden units (neglecting the overhead
needed to record the network parameters).

Iwata et al. presented each cardiac cycle as a set of
inputs to their network, which was able to reconstruct
these inputs using the recorded outputs of only two
hidden units. A limitation of this method is that the
network must be trained anew for each subject’s ECG,
and for new morphologies within each subject’s ECG.
In consequence, there must be an alternate means of
storing cardiac cycles which are poorly represented by
the network; if the number of such cycles is relatively
small, they may be stored in uncompressed form with-
out significant penalty. Another significant limitation
is the requirement that the network be trained “on the
job” (i.e., while it is being used for compression), which
implies the need for much more computation than is
needed to run a fixed network, as well as a modest
increase in storage requirements in order to maintain
information about changes in the network parameters.

Iwata’s network may be considered as a nonlinear
transformation of the input into a pair of basis func-
tions (represented by the hidden units) which are then
recombined in a nonlinear fashion by the output layer
into an approximation of the input. Just as in the case
of linear transformations such as the Karhunen-Loéve
transform (KLT), one may expect that a wider vari-
ety of inputs should be representable by increasing the
number of basis functions. We have explored this idea
and tested the feasibility of building a multi-layer sys-
tem with fixed parameters which can efficiently com-
press an ECG which had not been used to train it.

Since neural networks are capable of general nonlin-
ear transformations [5], such a study offers the oppor-
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tunity to determine if a nonlinear transform has any
advantage in this application over the truncated KLT,
which is the optimum linear method for data reduc-
tion [6]. Although no optimum nonlinear transforma-
tion can be identified a priori, we can begin with the
observation that a neural network can be constructed
to implement the truncated KLT, so that the data re-
duction achievable using the truncated KLT is a lower
bound on the best results obtainable using a neural
network. In our study, we compared the performance
of our ANNs with that of the truncated KLT, using in
each case the same training set and equal numbers of
hidden units and KL basis vectors in order to obtain a
meaningful comparison.

It should be noted that we did not attempt to ad-
dress the question of compressing the entire ECG;
rather, we focused (as did Iwata et al.) on compress-
ing the P-QRS-T only. For a practical application of
these techniques, it is necessary to have a reliable QRS
detector for identification of the waveforms to be com-
pressed, and to use another method to represent the
segments which fall between the detected P-QRS-T
waveforms. It is critically important to do so, since iso-
lated P-waves (as well as entire cardiac cycles missed
by the QRS detector) must be represented in the out-
put. In most cases, a piecewise linear representation is
a very efficient solution to this problem [7].

2 Methods

A training set of 78 beats was selected from the MIT-
BIH Arrhythmia Database. The training set included
a wide range of morphologies. A fiducial point, FP,
was placed near the R-wave peak of each beat. One
hundred samples were used to represent each beat: 15
samples during the P-wave (from F P—260 ms to FP—
175 ms), 60 samples during the PQ segment, the QRS
complex, and the ST segment (from FP — 175 ms to
FP+175 ms), and 25 samples during the T-wave (from
FP+ 175 ms to FP+ 330 ms). We sampled the QRS
complex at a higher frequency than either the P-wave
or the T-wave in order to preserve high-frequency detail
there.

Two other data sets were also prepared for devel-
opment and evaluation. The development set of 165
beats, also from the MIT-BIH Database but disjoint
from the training set, was used throughout the study
to assess the performance of a wide variety of ANNs
and to guide their development. The evaluation set of
271 beats (130 from the AHA Database, and 141 from
the European ST-T Database) was used at the end of
the study to test the performance of the ANNs which
appeared to be the most successful.
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Figure 1: Errors decrease for neural networks as the
number of hidden units increases, and for the truncated
KLT as the number of coefficients increases.

We used a commercial neural network simulator [8]
to implement our neural network architecture. A three-
layer backpropagation algorithm was used in most sim-
ulations [9]. The input and output layers were fixed to
have 100 units, corresponding to the 100 samples per
cardiac cycle as described above. The size of the hidden
layer varied for different simulations.

3 Results

The reconstruction error is a monotonically decreas-
ing function of the number of KLT basis vectors and
the size of the hidden layer of the neural network.
Although a perfect reproduction of the input can be
achieved using all of the KLT bases (with no net data
reduction), obtaining a similar result from a neural net-
work with a large hidden layer may require an imprac-
tically large number of training cycles and may depend
on other factors [10]. The networks in figure 1 were
trained for 5000 cycles. While an M-hidden unit net-
work performs better than a truncated KLT with M
coefficients for small M, the reverse is true for large M.
Since the length of training needed may be expected to
increase with M, insufficient training may explain this
observation.

To test this hypothesis, we studied a network with
M = 15in detail. This network has a hidden layer large
enough to produce a good approximation of its input
(see figure 1), while being small enough to train easily
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Figure 2: Errors for a three-layer ANN with 15 hidden
units as the number of training cycles varies.

| Development set Evaluation set

P QRS T | P QRS T
ANN | 668% 14.0% 207% | 703% 18.0% 31.0%
KLT | 58.7% 11.2% 16.1% | 55.6% 12.2% 21.4%

Table 1: Errors in beat reconstruction for M = 15 (see
text).

and to permit reasonable compression, as compared
with larger values of M.

Figure 2 shows the error function of a 15 hidden unit
network as the number of training cycles varies. Little
change occurs after roughly 10000 cycles. Examina-
tion of the errors obtained in reconstructing the de-
velopment set shows monotonically decreasing errors
without evidence of overtraining [11]. At this stage,
we expect the neural network to give optimum perfor-
mance for this configuration.

Table 1 shows the results of reconstructing beats
from both the development (MIT-BIH) and the evalu-
ation (AHA and EDB) sets. Root mean square errors
(RMSEs) were calculated for the P-wave, QRS com-
plex, and T-wave of each beat (normalized by the areas
of the respective segments). From such calculations, we
can compare the error in reconstructing the P-wave,
for instance, to the area of the P-wave in a single beat.
Similar comparisons are made for the QRS complex
and the T-wave. The relatively small error percent-
ages for the QRS complex in the table reflect the size
of the errors relative to the size of the QRS complex,
and not in any absolute sense. The truncated KLT
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Figure 3: Errors for a five-layer ANN with 5 hidden
units in the middle layer.

shows a slight advantage over the neural network for
M = 15. Based on the results shown in figure 2, there
is no reason to believe that this advantage would be
diminished if the network were trained longer.

Thus, we found that the 3-layer ANN did not have
any advantage over the Karhunen-Loéve transform.
When we investigated ANNs with larger numbers of
layers, however, we found some which do appear to
perform more efficient data reduction than is possible
using the KLT. Figure 3, for example, shows the perfor-
mance of a 5-layer ANN with only 5 hidden units in the
middle layer. The figure also shows the performance of
a 15-coeflicient KLT reconstruction of the AHA-EDB
data set. In the figure, the RMSE for every sample of
each beat in the data set is normalized by the area of
that beat. Although the error during the QRS complex
is roughly 2% higher for the 5-layer ANN than for the
KLT, errors during the P- and T-waves are not signifi-
cantly different, even though M = 5 for the ANN and
M = 15 for the KLT.

For a trained neural network, the activations of the
hidden units are characteristics of each beat. Thus
we may expect these values to provide a way to clas-
sify morphologies. Figure 4 illustrates how a 3-layer
network with M = 2 might be used for morphologic
analysis, using 1000 beats from AHA Database record
5002. For comparison, the first two KL coefficients are
plotted in the same way. Similar clustering is visible
in both plots. Preliminary results from our study of
this problem suggest that clustering using hidden-layer
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Figure 4: Clustering using 2-unit ANN (top) and 2 KL
coefficients (bottom).

outputs of ANNs may work as well as clustering using
the KLT, with the advantage that more efficient com-
pression can be performed at the same time, without
significantly different computational effort.

4 Conclusions

By this study, we hoped to answer a few basic questions
about the nature of data reduction transformations us-
ing neural networks. Although a purely experimental
approach is not sufficient to derive general properties of
ANNs, we have shown that neural networks are capa-
ble in some circumstances of more efficient ECG data
reduction than is possible using linear methods oper-
ating under the same constraints. Although we found
that fixed 3-layer networks offer no advantage over the
KLT, our results using networks with more than 3 lay-
ers indicate the opposite. The difficulty in studying
these networks, as well as in applying them, is sub-
stantial, however: large computational demands and
very low convergence rates are characteristic of many-
layered networks. Current research activities in the
area of neural computing are concentrated on develop-
ing more efficient algorithms and VLSI neural network
implementations, which may make it possible to ex-
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plore very large and complex neural architectures.
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