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Summary

Markov process models of atrial fibrillation
(AF) have been wused as a basis for AF detection
with limited success. The Markov modelling tech-
nique is equivalent to calculating the arithmetic
mean of a set of scores which reflect the relative
likelihood of observing pairs of R-R intervals in
AF vs. making the same observations outside of AF.
Beginning with such a set of scores, we show that
other techniques of averaging result in improved
detector performance. Further, we show that models
which deal with a continuum of R-R intervals can be
used to obtain performance superior to what appears
possible using finite-state-machine (FSM) models.
We compare the performance of several such detec-
tors on an AF database composed of 260 hours of
two-lead Holter recordings selected for the pres-
ence of intermittent atrial fibrillation.

JThe problem of AF detection

The detection of atrial fibrillation by an ECG
analysis program is motivated not only by the clin-
ical significance of the rhythm per se, but also by
the desire to improve the accuracy of ventricular
arrhythmia detection, since many of the commonly
used heuristics for PVC detection fail in the pres-
ence of AF,

Atrial fibrillation and flutter are character-
ized by chaotic electrical activity in the atria,
which may contract at up to 600 bpm in humans.
Frequently, the atrial activity is apparent in the
surface ECG as atrial flutter wavelets. At other
times, it may be impossible to observe any direct
evidence of atrial aetivity. In such cases, it may
be possible to diagnose AF on the basis of a sudden
disappearance of regularly-occurring P-waves.

The atrial impulses are conducted sporadically
through the AV node, resulting in a highly irregu-
lar ventricular response in atrial fibrillation,
which may become regular during atrial flutter.
This irregular ventricular response produces an R-R
interval sequence which bears a signature of AF
easily recognizable to the trained observer.
Because of the difficulty of detecting atrial
activity in the surface ECG, the most robust tech-
niques for automated AF detection depend on making
inferences from the R-R interval sequence. In fig-
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ure 1, R-R intervals for 15 minutes of ECG, includ-
ing a seven-minute AF episode, are shown. During
the AF episode, a dramatically different pattern of
R-R intervals is clearly visible.
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Figure 1. The pattern of R-R intervals
during an AF episode. The episode begins

at 17:45 and ends at 25:05. Between
minutes 26 and 27, several SVPBs are
visible.

Markov process models of the R-R interval sequence

An attractive approach for AF detection is due
to Gersch , who proposed modelling the R-R interval
sequence as a three-state Markov process. Each
interval 1is characterized as representative of one
of the three states {S,R,L} by classifying it as
short, regular, or long. In the present work,
intervals were called short if they did not exceed
85¢ of the mean interval, long if they exceeded
115% of the mean, and regular otherwise. The mean
interval is determined recursively by the relation

rrmean(i) = 0.75 ° rrmean(i-1) + 0.25 * rr(i)
for all observed R-R intervals rr(i) which dg not
exceed 1.5 seconds. We have shown previously that
R-R interval predictors of this form are adequate
for judging prematurity.

Algra3 used morphologic information in a 6~
state Markov process, in which each of the three
states based on R-R intervals is divided into two
states based on a "width" measure which tends to
separate PVCs from other beats. In the present
work, we simply ignored intervals bounded by PVCs;
this technique loses some information (for example,
regular intervals which follow PVCs are rare in
NSR, and relatively common in AF) but is quite ade-
quate to permit good performance.
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Using a suitable database, one can compile
statisties of transitions between states, and
derive transition probability matrices for various
rhythms. We selected 12 half-hour records (the
"leaﬁning set") from the MIT/BIH Arrhythmia Data-
base for this purpose, of which 2 contain only AF,
5 contain AF and normal sinus rhythm, and 5 contain
a variety of other rhythms considered likely to
confuse an AF detector. Results are summarized in

table 1.
(AF) (other rhythms)
from from
S R L S R L
S 351 734 303 S 11 301 246
to R 723 4828 1351 R 142 12668 575
L 330 992 431 L 4ok 236 375
~0.075 -1,460 0.346
SiJ = -0.806 0.256 ~0.304
0.828 -1.926 0.426
JTable 1. RR interval transition statis-

tics for MIT/BIH database tapes 201, 202,
203, 207, 209, 210, 213, 219, 220, 221,
222, and 223 (the "learning set" used in
the present work). S,, is the S (score)
matrix described in tﬁé text.

Assume that the R-R interval sequence

T={ t1, tz, s g tn } (ti in {S,R,L})
is controlled by a stationary first-order Markov
process characterized by the transition probability
matrix
= ) +
pi,j,R = P( ti ! tj, R ) (R in {AF, other})

The conditional probability for observation of T
given process R is (by the Markov hypothesis)

n-1

] -
PCTHR) =TT Pis1,1,R
11

By choosing R among the available rhythm models
such that P(T|R) is maximum, we have the maximum
likelihood procedure for choosing the most probable
rhythm.

A useful computational efficiency may be
achieved by storing the logarithms of the transi-
tion matrices and adding the appropriate elements
rather than multiplying the elements of the origi-
nal matrices. Furthermore, if the goal is to make
a binary decision (e.g., is AF present or not?), we
may calculate a single transition matrix for all
non-AF rhythms, and divide its elements by those of
the AF transition matrix. We can now define the
matrix

Sig =k 108 (Pyy oiner / Pij, ar)

the negative elements of which have the property
that the transitions they represent are relatively
more likely to occur in AF than otherwise.

The Markov process model suggests that a
sequence of n intervals can be classified by simply
adding n-1 appropriately chosen elements of S, and
declaring AF if the sum is negative. We shall

refer to the sum and analogous quantities as AF
predictors. If desired, a bias
S0 = k ° log [P(other) / P(AF)]

based on the a priori probabilities of AF and other
rhythms may be added to the predictor. It may also
be desirable to incorporate hysteresis into the
decision process, since the non-stationary statis-
tics of AF can cause substantial short-term fluc-
tuations in the predictor.

The remaining degree of freedom is the choice
of n, which 1is a compromise between the expected
increase in accuracy from basing the decision on a
larger context, and the requirement for reasonably
prompt response to rhythm changes, which may vary
depending on the application. For real-time moni-
tors, a choice of n = 20 works reasonably well.

Extensions to the Markov process model

The Markov process model approach outlined
above is equivalent to calculating the arithmetic
mean of appropriately chosen elements of the matrix
S. The elements of S may be considered as scores
which are most negative for those transitions which
are most characteristic of AF. The inclusion of a
priori probabilities of AF and other rhythms is
equivalent to resetting the reference level of the
AF predictor. The need for hysteresis in the deci-
sion process may be described in terms of the
"noise™ in the signal represented by the time
sequence of scores as a function of time.

Collectively, these observations led us to the
conclusion that the AF detection problem can be
reduced to the problem of processing the sequence
of elements of S, now treated as a function of
time, using standard signal-processing techniques.

Two classic signal processing problems are
present here. The first 1is quantization error,
which in this context corresponds to erroneous
assignment of an interval to a state. A useful
technique for reducing the effects of quantization
error is interpolation; in this case, we may con-
sider the S matrix as a set of nine samples of a
continuous function S' of the normalized current
and previous R-R intervals (see figure 2).

The second problem is noise in the signal, a
problem addressed by filtering, of which taking the
arithmetic mean (as we have seen is implied by the
basie Markov process model) is a special case.
Although motivated originally by an interest in
improving efficiency, we found that simple first-
order filters of the form

V(t) = k LT (1 - k) v(t-1)
are markedly superior to arithmetie averaging for
noise removal in this context. The constant k
should be rather small; we found that k = 1/64
works well.
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Figure 2.
by interpolating between the elements of

The function S*', constructed
the matrix S. Negative values (low
points) indicate regions in the pattern
space more likely to be observed in AF
than elsewhere.

On the same data set which was used to develop
the S matrix, we tested the basic Markov process
model against variations which employed a first-
order filter, interpolation, or both. Receiver
operating curves were generated for the four detec-
tors (see figure 3). It is apparent that first-
order filters have the effect of attenuating the
tail of the "other rhythm"™ distribution, while
interpolation has the same effect on the tail of
the AF distribution. These results suggest that
noise in the predictor signal due to short-term
irregularities outside of AF is largely removed by
filtering, while in AF quantization error is a more
significant problem, the effects of which are miti-
gated by interpolation.

B-R predictor arrays for AF detection

Observing that R-R intervals in AF, unlike
those in most other rhythms, are unpredictable, an
alternative to Markov process modelling is to con-
sider the mean error of a well-designed R-R inter-
val predictor as an AF predictor. An elegant
method which treats each of the N previous inter-
vals as pred%ctors of the current interval is due
to Schluter”. The mean errors of each predictor
are calculated using a first-order filter. The
predictor with the lowest mean error is designated
the "best predicting interval®. If the mean error
of the best predicting interval exceeds a thres-
hold, AF is declared.

Ihe AF database
Although the MIT/BIH Arrhythmia Database makes

evaluation of an AF detector straightforward, such
evaluations may be reasonably criticized on the

basis of the relatively small sample size, espe~
cially since the same database was used for
development of the detector. For this reason we

sought to develop a much larger database, annotated
only with respect to AF onsets and terminations,
which could form a testbed for AF detector evalua-
tion.

Basic Markov process model
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Figure 3. Receiver operating curves
(ROCs) for the basic Markov process model
and three variations. Based on these
curves, decision boundaries were chosen
to produce the lowest total error rate.
Below are shown AF sensitivity (Se) and
positive predictivity (+P) based on these
choices for the four methods shown above
and for a fifth method described in the

text.

Detector AF Se AF +P
Basic Markov model 90.03% 80.14%
with first-order filter 96.15% 82.34%
with interpolation 88.22¢9 81.31%
with filtering and 96.09% 86.79%

interpolation
R-R predictor array 95.44% 80.52%

From the library of over 8000 24-~hour Holter
recordings collected by the Arrhythmia Laboratory
of Beth Israel Hospital, we digitized 26 ten~-hour
excerpts of tapes on which episodes of paroxsysmal
atrial fibrillation had been diagnosed. Each digi-
tized excerpt was interpgeted by an experimental
arrhythmia analysis program  which recorded beat
annotations and R-R intervals in disk files. The
R-R intervals were then plotted as in figure 1 and
examined visually for evidence of rhythm change.
For each possible rhythm change, a short excerpt of
the two-channel digitized ECG, with time reference
marks and the program's beat annotations, was plot-
ted on a chart recording. Rhythm changes were
manually noted on the paper strips to an accuracy
of one R-R interval, and recorded in disk files.
The contents of the AF database are summarized in
table 2.
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Rhythm Hours Episodes Beats
Atrial fibrillation 94.99 319 532,276
Atrial flutter 1.98 40 16,563
Other rhythms 163.03 293 733,550
Total 260.00 652 1,282,369

Table 2. AF database profile.

Evaluation of detectors on the AF database

Three of the detectors shown in figure 3 were
evaluated on the AF database using thresholds
chosen to minimize total errors on the learning
set. Results are summarized in table 3. Hys-
teresis based on additional experience with the
learning set was incorporated into all detectors.
PVC-bounded intervals (as determined from the anno-
tations produced by the ECG analysis program) were
excluded from the inputs of detectors 1, 2a, and 3.

It is clear that the basic Markov process
model, with thresholds set for operation near the
"knee" of its ROC on the learning set, is operating
at some distance from that point on the AF data-
base. Although its sensitivity is excellent, there
is an unacceptably high false positive rate. These
observations suggest that this detector is tuned to
its learning set. The results for detectors 2a and
2b demonstrate that the addition of filtering and
interpolation to the basic Markov model results in
a robust detector. Detector 2b is identical to 2a,
but PVC-bounded intervals are not removed from the
input. There is some degradation as a consequence,
but performance remains adequate. Results for the
R~R predictor array approach show significant
degradation with respect to sensitivity on the
learning set, suggesting that this detector may
lack generality.
Detector AF Se AF +P
1. Basic Markov model 99.59% 65.97%
2a. (1) + filtering + interpolation 93.58% 85.92%
2b. (2a) + PVC-bounded intervals 90.65% 82.38%
3. RR predictor array 75.79% 91.93%

Jable 3. AF database evaluation results
(260 hours)

Conclusions

We have shown that the Markov process model
for AF detection is equivalent to determining the
arithmetic mean of a series of scores based on the
R-R 1interval sequence. Application of a first-

order filter to the same series of scores has the
effect of reducing false positive detections of AF,
while the use of interpolation between elements of
the discrete score matrix has the effect of reduc—
ing false negatives. Performance of this strategy
improves if PVC-bounded intervals are excluded from
consideration, but remains acceptable if they are
not. Finally, in contrast to the other techniques
examined, the performance of the new method does
not change significantly when tested on a large

database, suggesting it is statistically well-
behaved.
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